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In this research, we propose two n e w clustering algorithms, the improved competit ive learning ne twork 
(ICLN) and the supervised improved competit ive learning network (SICLN), for fraud detection and ne twork 
intrusion detection. The ICLN is an unsupervised clustering algorithm, which applies n e w rules to the standard 
competit ive learning neural network (SCLN). The network neurons in the ICLN are trained to represent the 
center of the data by a n e w reward-punishment upda te rule. This n e w upda te rule overcomes the instability 
of the SCLN. The SICLN is a supervised version of the ICLN. In the SICLN, the n e w supervised upda te rule uses 
the data labels to guide the training process to achieve a be t te r clustering result. The SICLN can be applied to 
bo th labeled and unlabeled data and is highly tolerant to missing or delay labels. Furthermore, the SICLN is 
capable to reconstruct itself, thus is completely independent f rom the initial number of clusters. 

To assess the proposed algorithms, we have performed experimental comparisons on bo th research data 
and real-world data in fraud detection and network intrusion detection. The results demons t ra te tha t bo th the 
ICLN and the SICLN achieve high performance, and the SICLN outperforms traditional unsupervised clustering 
algorithms. 

 2013 Elsevier B.V. All rights reserved. 

1. Introduction 

Fraud detections and network intrusion detections are extre-
mely critical to e-Commerce business. According to U.S. census 
bureau retail e-Commerce sales reports, e-Commerce in North 
America has continued to grow 20% or more each year. However, 
fraud costs e-Commerce companies in U.S. and Canada an 
overwhelming lost each year. With the recent growth of the 
e-Commerce, credit card fraud has become more prevalent. Based 
on the survey results in 2009, on average, 1.6% of orders proved to 
be fraudulent, which is about $3.3 billions. In addition to the 
direct losses made through fraudulent sales, fraud victims' trust 
in both the credit card and the retail company decreases, which 
further increases the loss. It is the intent of the companies and the 
credit card issuers to detect or prevent fraud as soon as possible. 
Network intrusions, on the other hand, attack e-Commerce companies 
from their back. Any down time of Web servers or leaks of business or 
customer information may cost huge loss. 

Both the credit card fraud-detection and network intrusion 
detection domains present the following challenges to data mining: 

• There are millions of transactions each day. Mining such massive 
amount of data requires highly efficient techniques. 
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• The data are highly skewed. There are many more good events 
than bad events. Typical accuracy-based mining techniques 
may generate highly accurate detectors by simply predicting 
all transactions legitimate but these detectors cannot detect 
fraud at all. 

• Data labels are not immediately available. Frauds or intrusions 
usually are aware after they have already happened. 

• It is hard to track users' behaviors. All types of users (good 
users, business, and fraudsters) change their behaviors quite 
often. Finding new or changing patterns is as important as 
recognizing old patterns. 

In this research we propose two clustering algorithms for fraud 
detection and network intrusion detection: the improved competi-
tive learning network (ICLN) [20] and the supervised improved 
competitive learning network (SICLN). The ICLN is an unsupervised 
clustering algorithm developed from the standard competitive 
learning network (SCLN) [15]. The SICLN is a supervised clustering 
algorithm derived from the ICLN. Our goal is to develop advance 
machine learning techniques to solve the practical challenges in 
network intrusion detections and fraud detections. 

Fig. 1 is an example of a fraudulent event. If credit card informa-
tion of a card holder is stolen and uses for online shopping, it will 
take a few days for this transaction to appear on the credit card 
statement, and take a few more days or a few months for the real 
card holder to know and report to the bank. It will take a few other 
days for the bank to sent a notice to the retail company. Usually 
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Fig. 1. Fraud report procedure. 

would have been happened and the patterns could have been 
changed at the time they are found. 

The ability to learn from unlabeled data and deal with 
abnormal data makes clustering a good candidate for network 
intrusion detection and fraud detection. However, on the other 
hand, a clustering algorithm may not produce desirable clusters 
without additional information. Fig. 2 is an example. Clustering 
result illustrated in Fig. 2(a) is perfect in terms of unsupervised 
learning. The data points are grouped into clusters based on their 
natural similarities. However, the actual desirable clustering 
result is in Fig. 2(b) if we know the data labels. Guided by all or 
a portion of data labels, a clustering algorithm could achieve this 
desirable result. Based on the potential to combine the strength of 
classification and clustering, supervised clustering technique is 
therefore applied to our research. 

Fig. 2. Nature clustering result vs. desirable result. (a) Unsupervised clustering 
when the labels of data points are unknown or unused. (b) Desirable clustering 
when the labels of data points are known. 

orders are considered as good before being reported as frauds. They 
are deemed to be fraud once the company receives fraud reports. The 
time gap from the date of an order to the date of the fraud report 
leads to mislabeled data. Mislabeled data could introduce noise to the 
supervised leaning. Waiting for a few months until most of the fraud 
reports are completed might reduce the mislabeled noise, but lose 

2. Background 

The techniques for fraud detection and intrusion detections 
fall into two categories: statistical techniques and data mining 
techniques. Traditional methods of network intrusion detection 
are based on the saved patterns of known events. They detect 
network intrusion by comparing the features of activities to the 
attack patterns provided by human experts. One of the main 
drawbacks of the traditional methods is that they cannot detect 
unknown intrusions. Moreover, human analysis becomes insuffi-
cient when the volume of the activities grows rapidly. This leads 
to the interest in data mining techniques for fraud detection and 
network intrusion detection [10,19]. 

Data mining based network intrusion detection techniques can 
be categorized into misuse detection and anomaly detection [19]. 
The misuse detection techniques build the patterns of the attacks 
by the supervised learning from the labeled data. The main 
drawback of the misuse detection techniques is that they cannot 
detect new attacks that have never occurred in the training data. 
On the other hand, the anomaly detection techniques establish 
normal usage patterns. They can detect the unseen intrusions by 
investigating their deviation from the normal patterns. 

The artificial neural networks provide a number of advantages 
in fraud detection and network intrusion detection [5]. The 
applications of the neural network techniques includes both the 
misuse detection models and the anomaly detection models 
[18,25]. A multi-layer perceptron (MLP) was used in [13] for 
anomaly detection. A single hidden layer neural network was 
used and tested on the Defense Advanced Research Projects 
Agency (DARPA)1998 data. The MLP was applied in [22]. The 
back-propagation algorithm was used in the learning phase to 
adapt the weights of the neural network. As an unsupervised 
neural network, the self-organizing maps (SOM) has been applied 
in anomaly detection. It implicitly prepares itself to detect any 
aberrant network activity by learning to characterize the normal 
behaviors [25]. The SOM was also applied to perform the cluster-
ing of network traffic and to detect attacks in [14]. The SOM was 
designed to learn the characteristics of normal activities in [12]. 
The variations from normal activities provided an indication of a 
virus. The unsupervised niche clustering (UNC), a genetic niche 
technique for unsupervised clustering was applied to the intru-
sion detection in [21]. Each cluster evolved by the UNC was 
associated with a membership function that followed a Gaussian 
shape. Using the normal samples, the UNC generated clusters 
summarizing the normal space. 

A hybrid artificial intelligent system is presented in [23]. An 
unsupervised neural model was embedded in a multi-agent system 
for network intrusion detection. Hybrid learning approaches [1,8] 
integrate different learning and adaptation techniques to overcome 



individual limitations. Combining the strength of two or multiple 
approaches could achieve high efficiency. A hybrid model of the 
SOM and the MLP was proposed in [5]. The SOM was combined with 
the feed-forward neural network to detect the dispersing and 
possibly collaborative attacks. 

Traditional fraud detection approaches face the same problems as 
traditional methods of network intrusion detection. Fraud detection 
analysis is conducted by fraud specialist by comparing the fraud 
activities with normal transactions. Human analysis becomes insuffi-
cient as the volume of the transactions grows up rapidly. Moreover, 
traditional fraud detection is not receptive to new or changing 
patterns. Data mining based fraud detections are also categorized 
into misuse detection and anomaly detection. There have been many 
commercial data mining tools available. The following commercial 
tools are on the top level: SAS Enterprise Miner, SPSS Clementine, and 
IBM DB2 Intelligent Miner. These commercial tools can be used 
effectively for discovering patterns in data. There are less research 
reports on fraud detection than those on network intrusion detection 
despite their similarity. This is simply because financial data usually 
do not open to the public like KDD99 data for network intrusion 
detection and are hard to acquire. Decision trees are used in [6] for 
fraud detection. Their approach divided the large data set of labeled 
transactions into smaller subsets. Then it used decision tree to 
generate classifiers in parallel and combined the resultant base 
models by metal-earning [7] from the classifiers' behavior to generate 
a meta-classifier. Brause et al. [3] combined radial basis function 
network and rule-based information for credit card fraud detection. 

3. Improved competitive learning network 

The ICLN is developed from the SCLN. It overcomes the 
shortages of instability in the SCLN and converges faster than 
the SCLN. Therefore it obtains a better performance in terms of 
the computational time. 

3.1. The limitation of SCLN 

The SCLN consists of two layers of neurons: the distance measure 
layer and the competitive layer. The structure of SCLN is shown in 
Fig. 3. The distance measure layer consists of m weight vectors 
W = {w1,w2, ...,wm}. When a training example is presented, the 
distance measure layer calculates the distance between the weight 
vectors and the training example. The distances calculated in the 
distance measure layer become the input of the competitive layer. 
The competitive layer finds out the closest weight vector of the 
training example. The output of the competitive layer is a 1 x m 
vector. Each bit of the output vector is either 0 or 1, representing the 
competitive result of the weight vectors. For example, if neuron wj 
won the competition, output would be a 1 x m vector with y(j) = 1 
and y(i) = 0 8i a j. The winning weight vector wj is then rewarded to 
be closer to the training sample. Every time the winning weight 
vector moves towards a particular sample. The other unwon weight 
vectors will remain unchanged. This process is repeated for all the 
training samples for many iterations. Eventually each of the weight 
vectors would converge to the centroid of a cluster. 

The update rule of the SCLN is called ''winer takes all''. That 
means only one wining neuron updates itself each time when a 
training example is presented. The wining neuron would update 
itself to move closer to the training sample once it won the 
competition. The update is calculated by the standard competitive 
learning rule: 

wj(r +1) = wj(r) + z(r)(x-wj(r)) (1) 

where wj is the weight vector of the winning neuron j, and Z is the 
learning rate. Only one wining neuron updates itself once in a 
time. The essence of competitive learning is illustrated in Fig. 4. 

The performance of the SCLN relies on the number of initial 
neurons and the value of their weight vectors. Once the number 
of output neurons is set, the number of clusters is also pre-
determined regardless of data distribution. On the other hand, 
different initial weight vectors may lead to different number of 
final clusters because the update function in Eq. (1) only changes 
the weight vector of the winning neuron toward its local nearby 
examples. Fig. 5 shows a scenario that reveals the limitations of 
the SCLN. In this example, two neurons are initialized close to one 
cluster. Both of them will stay in the clustering result since SCLN 
is a reward only algorithm. The SCLN clustering result of this 
example will be four clusters although only three clusters are 
expected as shown in Fig. 5(b). 
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Fig. 3. The SCLN consists of two layers of neurons: the distance measure layer and 
the competitive layer. Fig. 4. The principle of the SCLN. (a) Initial weight vectors. (b) Clustering result. 
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Fig. 5. The drawback of the SCLN. (a) Initial weight vectors. The performance of 
the SCLN depends heavily on the number of the initial neurons and their initial 
weight vectors. (b) Clustering result. The left lower cluster is separated into two 
groups since two weight vectors are initialized close to one cluster. 

3.2. New update rules in ICLN 

The ICLN changes the SCLN's reward-only rule to reward-
punish rule. The winning neuron updates its weight vector by the 
same update rule in Eq. (1). This updated process is also called 
reward as the wining neuron is updated toward the training 
example. At the same time, the other neurons also update their 
weight vectors by 

wj(r+1)= w,(r)-Z2(r)K (d(xj))(x-wj(r)) (2) 

where K(d(x,j)) is a kernel function in which d(xj) is the distance 
between neuron j and the input x, and Z2 is the learning rate. This 
update process is called punish as the neurons are updated to 
move away from the training example. There are various choices 
of the kernel function K(d(x,j)), such as the inverse distance, the 
triangular kernel, the quadratic kernel, and the Gaussian ker-
nel [2]. A kernel function obtains the maximum value at zero 
distance, and the value decays as the distance increases. A good 
kernel function smooths and regulates the updated value. 

The effect of the reward-punishment update rules is shown in 
Fig. 6. The two weight vectors at the left bottom of Fig. 5(a) compete 
against each other when applying ICLN. The punish rule pushes the 

losing weight vectors away from the cluster and one of them will 
finally be removed from the cluster. Furthermore, since the distance 
between the training example and all of the weight vectors are 
always calculated for the competition, using these values to apply 
punish rules to the losing weight vectors will accelerate the 
clustering process without additional calculations. 

3.3. The ICLN algorithm 

The ICLN algorithm is outlined in Fig. 7. The ICLN first 
initializes k neurons. Two methods can be used for the initializa-
tion. One is to assign the k neurons with k random training 
examples. The other is to assign the center point, i.e. the mean, of 
the whole training data to all k neurons. Center point initializa-
tion takes more iterations to converge than random one. The 
number of clusters k is usually set to a number bigger than the 

Fig. 6. The effect of the ICLN update rules. 

Inpu t : X — {xi,x2,. • - t h e input da tase t 
O u t p u t : W = {i«i, k>2, . . . , uiit}: the weight vectors 
B E G I N 
1. Randomly initialize the weight vectors W = { w i , w 2 , . . ; } 
2. Se tup t h e learning ra tes rji a n d 172 for t h e winning neuron 

a n d the losing neurons, respectively. 0 < rfc < 771 < 1. 
3 . Se tup t h e min imum weight u p d a t e value Ta 
4 . Select Kernel funct ion: K{d{xi ,Wj)) = e r ^ ' ^ ^ 
5. Se tup m a x i m u m number of i terat ions Mepoch 
r e p e a t 

f o r Xi £ X d o 
for wj € W d o 

compute t h e dis tances: d(xi, 11)=|| — Wj || 
end for 
uw = Wa if a = arg min* =1 d(wm, z ; ) 
/ • U p d a t e w w ( n * / 

W^in = Wnin + Vl(%i ~ Wwin) 
/ • U p d a t e o ther weight vectors w € W A w wwin */ 

w = w — rkK(d(Xi, w))(Xi — w) 
e n d for 

until |Aui| < Ta Vtnei^or (#iteration > M^h) 
Remove all weight vectors t h a t have no associated input . 
E N D 

Fig. 7. Algorithm: the improved competitive learning network. 



expected number of clusters because the ICLN can reduce the 
number of clusters but cannot add new cluster to the network. 

The ICLN trains the initial weight vector W = {w1,w2, ...,wk} 
by randomly presenting the training examples X = {x1 ,x2 , . . . ,xn}. 
When a training example x is presented to the ICLN, the weight 
vectors compete to each other by comparing their distance, such 
as Euclidean distance, to x. Only one weight vector with the 
minimum distance to x wins the competition: 

wWi„(x) = Wj if j = arg min d(wi,x) 
i 1 

(3) 

The wining weight vector is then updated by the reward function 
as in Eq. (1). At the same time, other weight vectors in the 
network are updated by the punishment function as in Eq. (2). 
The result of this reward-punishment rule is that the wining 
neuron is updated to be closer to the training example and the 
other neurons are updated away from the training example. 

After the network finishes learning from x, another training 
example will be presented to the network. The network will then 
compete and learn from this new training example. The ICLN 
iterates the learning process until one of the stopping criteria are 
satisfied. One criterion is that the maximum update to weight 
vector W is less than a preset minimum update threshold: 

max l l w i ( r ) - w i ( r - 1 ) l l < T D 
i = 1 

(4) 

where wi(r) is the weight vector wi in the current iteration, 
w i ( r -1 ) is the weight vector w i in the previous iteration, and TD 

is the preset minimum update threshold. The other criterion is 
that it finishes the preset maximum number of iterations. 

4. Supervised improved competitive learning network 

The SICLN is a supervised clustering algorithm derived from 
the ICLN. When data labels are available, the SICLN uses them to 
guide the clustering procedure. 

4.1. The objective function 

The SICLN uses an objective function Obj(X,W) to measure the 
quality of the clustering result. The purpose of the objective function 
is to minimize the impurity of the result clusters and keep a 
minimum number of clusters. The objective function is defined as 

Obj(X, W) = a x Imp(X, W)+b x Sct(X,W) (5) 

where a and b are the weights of impurity and scattering respec-
tively, and a+b = 1. 

The impurity of the whole result is the weighted average of the 
impurity of each cluster: 

Imp(X,W ) = Ei = 1 |wi | x Imp(X,Wi) 

where n is the count of the data set X and | wi | is the count of the 
cluster members of W,-. One common choice of the impurity 
function is the misclassification rate. If a cluster contains mem-
bers that are labeled as classes {c1 ,c2 , . . . ,c,}, the misclassification 
rate of this cluster is the percentage of members that are not 
labeled as the dominate class. The dominate class of a cluster is 
defined as the most frequent class of its members. For a data set 
X = {x1,... ,xn} which are labeled as classes C = {c1,...,ct}, cj is the 
dominate class of wi if the count of members of wi belong to class 
cj is more than those belong to any other class 

DomC(w) = cj 

if #(x A cj) > #(x2cj; x A w,) 8x A w 

where # denotes the count. Similarly, the second dominate class 
Dom2C(w) is the class that has more members than other classes 
except the dominate class. The misclassification rate of cluster of 
weight vector wi is computed as 

Misrate(wi) = #(x2DomC(Wi); x A W,) 

H 
(7) 

where 9wi9 is the count of the members of wi. 
When misclassification rate is chosen as the impurity function, 

according to Eqs. (6) and (7), the impurity is calculated as 

E f = 1 | w i | X 
Imp(X,W )=• 

#(x2DomC(wt)) Iw-9 

E?= 1 #(x==DomC(wi)) (8) 

An alternative to misclassification rate is the GINI impurity 
measure. The GINI impurity measure was first used in classifica-
tion and regression trees (CART) [4] and has been widely used to 
determine the purity of split in decision trees. The GINI of a 
weight vector wi is computed as 

Gini(w) = 1- ± ( # ( x A c; x A wi) 

j = 1 H 
(9) 

where cj is the class of members of wi from j = 1; 2 ; . . . ; t, and | W, | 
is the size of wi. A smaller GINI indicates a lower impurity. The 
GINI value reaches its maximum if the members are equal popula-
tion in each class. By contrast, GINI value is 0 if all members belong 
to one class. When GINI is chosen, according to Eqs. (6) and (9), the 
impurity is calculated as 

T,'i = 11 w , I X ( 1 - E j = 1 

Imp(X,W)=• 

#(x A cj; x A w,) 

H 
(10) 

The second part of the objective function is the scattering. A 
simple choice of the scattering function is to compare the number 
of clusters and the number of data points: 

Sct(X,W) = \ — 
n (11) 

where t represents the number of classes of the data set X, n is the 
number of data points, and i is the number of clusters. A bigger 
scattering indicates a wider spread clustering. When the number 
of clusters equals to the number of data points, scattering reach 
its maximum. By contrast, if the number of clusters is the same as 
the number of classes, scattering is 0. An alternative choice is to 
use the size of each cluster: 

(6) Sct(X,W) = 
i 1 

V ^ x(k-t) 
t=\ 1 w i 1 ( ) 

(12) 

Scattering is bigger when the variance of the size of the clusters 
are bigger. Eliminating small size clusters will minimize this 
clustering function. 

For fraud detection and intrusion detection, we chose mis-
classification function as the impurity function since it is easy to 
set up by business goal. We choose the first scattering function 
because the alternative choice intent to remove small size 
clusters but fraud and intrusion are usually in small size clusters. 
Combining Eqs. (5), (8) and (11), the following objective function 
is chosen to evaluate the quality of a clustering result. 

Obj(X,W) = a x Tkk= 1 #(x==DomC(w,)) + b x\ n (13) 

k 

n 

n 
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where a is the weight of impurity, and b is the weight of 
scattering. A smaller Obj(X,W) indicates a better clustering result. 
Minimizing Obj(X,W) attains the best result. It means to minimize 
both impurity and scattering. However, impurity and scattering 
usually conflict to each other. Decrease of either one leads to 
increase of the other. 

4.2. The SICLN algorithm 

The SICLN is outlined in Fig. 8. It first initializes k neurons. The 
initialization methods of the SICLN are the same as those of the 
ICLN. It is not as important because the network will be recon-
structed in training. 

The SICLN also labels the weight vectors with their member 
data points. In the SICLN, a weight vector is labeled to a class with 
the biggest population of its cluster members. If all members are 
in "unknown", this weight vector will be labeled as "unknown". 
Fig. 9 illustrates how the initial weight vectors are labeled. w1 and 
w5 are labeled as "Black" because their black point members are 
more than gray point members. w2 and w4 are labeled as "Gray" 
because gray points of their members are more than black points. 
w3 is labeled as "unknown" because all of its members are missing 
label. w6 is labeled as "unknown" because it has no data member. 

The learning step of the SICLN is a revised version of the ICLN. 
The output neurons compete to be active. Since labels are 
available, The SICLN uses the labels to update the weight vectors. 
In the new rule, only neurons with the same class as the training 
example or "unknown" has the right to compete to win. Neurons 
that are labeled as different class will lose. When a neuron won 
the competition, its weight vector would be rewarded by the 

Input: X = {xi,x2, • • . ,x„}\ the input dataset 
Input: L(X) = {LIltLxlt..., i I n } : the label of the dataset 
Input: C = {ci,c2,... ,Ct}- the classes of the dataset 
Output: W = {wi, ii>2,... ,10*}: the weight vectors 
Beg in 
1 / / In i t ia l ize / / 

1.1 Randomly initialize the weight vectors W = {u>i,W2,... ,v>k} 
1.2 Setup other parameters such as learning rate, Kernel function, 

objective thresholds, iteration limit 
2 //Training// 
repeat 

2.1 Identify members of W 
1.1 Label W with their dominate class. 
2.3 / /Lea rn ing / / 
for V i e X d o 

2.3.1 Look for wining weight vector wwi„ regarding input x 
2.3.2 Update wwiTl with reward function 
2.3.3 Update other w w^m with punishment function 

end for 
2.4 If objective threshold is satisfied, stop 
2.5 Split weight vector w €W \f estimate objective function value 

is higher than before splitting. Construct new vectors W = W.^ 
2.6 / /Learning (same as 2 .3) / / 
for V i e X d o 

2.6.1 Look for wining weight vector wwin regarding input x 
2.6.2 Update t u ^ with reward function 
2.6.3 Update other w ^ ww i n with punishment function 

end for 
2.7 Merge weight vector Wi and Wj if estimate objective function value 

is higher than before merging and they are the same class and closer 
to each other than any other weigh vectors. Construct new vectors 

until Object function is satisfied or iteration exceeds limit 
3 Remove all weight vectors that have no member data point. 
4 Output W — {iii],i02,--• ,iiifc} 
E n d 

Fig. 9. The SICLN labels the weight vectors with their member data points. 

Fig. 10. The reconstruction process of the SICLN. 

same update rule as Eq. (1) in the ICLN. The punishment update is 
also the same as the ICLN in Eq. (2). 

In the SICLN, when a labeled training example is presented to 
the network, only the neurons of the same class or "Unknown" 
class are able to win to get the reward. However, if an unlabeled 
training example is presented to the network, all neurons in the 
network have the ability to compete to get reward or punish. In 
this case, the learning step of the SICLN becomes the same as that 
of the ICLN. If all training examples in the data set are unlabeled, 
all train data and weight vectors belong to "unknown" class. At 
this point, the SICLN becomes an ICLN. 

After the learning step, the SICLN will reconstruct a new 
network based on the trained network. In the reconstruction 
step, a neuron is split into two new neurons if it contains many 
members belonging to other classes. On the other hand, two 
neighboring neurons are merged into one if they belong to the 
same class. Fig. 10 illustrates the reconstruction step of the SICLN. 

The split process starts from the clusters with the maximum 
impurity values. An estimated after split impurity is between the 
after split impurity and the best possible impurity. For example, if 
weight vector ws is split to two vectors ws1 and ws2 , the after split 
impurity is 

E k = 1 #(x==DomC(Wi)) 
Fig. 8. Algorithm outline: supervised improved learning competitive network. 

Impafter (X,W) = 



The best possible impurity is 

Impbest (X,W ) = Ei = i,i a s #(x==DomC(Wi)) 

+ 
#(x2DomCws,x2Dom2 C(ws) 

The estimated value of the impurity after split is 

imp(X,W) = Impafter(X,W)+y x (ImpbeSt(X,W)-ImpafKr(X,W)) 

where y is an estimate factor 0 < y < 1. The Scattering value after 
split is 

Sct(X,W) = ^ J k ^ — 

The estimated objective function value is 

Obj(X, W) = a imp(X, W)+b Sct(X, W) 

If the estimated objective value is smaller than the objective value 
before split, the weight vector will be split into two. The median 
point of members of the dominate class and the median point of 
the members of the second dominate class of the neuron are 
selected to be the new neurons. 

The merge process looks for the closest same class weight 
vectors as the candidates. To find out two weight vectors that are 
closer to each other than to any other weight vectors, we use the 
mutual neighbor distance [17]. The mutual neighbor distance is 

MND(wi,Wj ) = NN(wi,Wj ) + NN(Wj,wi) (14) 

where NN(wi,Wj) is the neighbor number of neuron wj with 
respect to neuron wi. 

If MND(w-t ,w2) = 2 (e.g. NN(w1 ,w2)= 1 and NN(w2,w1 ) = 1), w1 

and w2 are closer to each other than to any other weight vectors. 
wi and wj are merged if they meet the following conditions: (1) 
C(wi) = C(wj), (2) MND(wi,wj) = 2, (3) Obj(X,Ws) < Obj(X,W). The 
new neuron takes the mean of wi and wj as its weight vector. 

The reconstruction step creates a ' 'new'' network by splitting 
or merging the weight vectors, driven by the objective function. 
This ' 'new'' network will replace the old one to continue the 
learning step. This learn—reconstruct iteration—repeats until one 
of the following stopping criteria is satisfied: (1) the objective 
function value satisfies the minimum threshold; (2) the training 
reach the maximum number of iterations. 

4.3. The SiCLN vs. the iCLN 
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Fig. 11. The ICLN vs. the SICLN. (a) ICLN: cluster data in its na tu re groups. Same 
class data at the left bo t tom are cluster into two groups represented by weight 
vectors w2 and w3. Data of different classes in the middle are clustered into one 
group represented by weight vector w4. (b) SICLN: opt imize the puri ty of the 
clusters and the n u m b e r clusters. Weight vector w4 in (a) is split into wb and wc to 
maximize the puri ty of the clustering. Weight vectors w2 and w3 are merged to wa 
to minimize the n u m b e r of clusters. 

While ICLN has the capability to cluster data in its nature 
groups. The SICLN uses labels to guide the clustering process. The 
ICLN groups data into clusters by gathering closer data points into 
the same group. As a supervised clustering algorithm, the SICLN 
minimizes the impurity of the groups and the number of groups. 

Fig. 11 shows the improvement from the ICLN to the SICLN. 
The result of the ICLN is in Fig. 11(a). The data are identified in 
their nature groups without looking at the data labels. Weight 
vectors w2 and w3 become the cluster center of two groups of data 
at the left bottom although both groups belong to the same class. 
On the other hand, weight vector w4 represents the group of data 
on the right upper, which contains data of two classes. The result 
of the SICLN applying to the same data is in Fig. 11(b). Weight 
vector w4 is split into wb and wc, which represent the centers of 
two groups of data with different classes. Therefore, the purity of 
the clustering result is higher than that of the ICLN. At the same 
time, the SICLN attempts to result in less clusters while keeping 
the same level of purity. Weight vectors x2 and w3 are merged to 
wa. The new weight vector wa becomes the center data group 
w2 + w3, which belongs to the same class. 

5. Experimental comparisons 

In this section, we compare the performance of the SICLN and 
the ICLN with the k-means and SOM on three data sets: the Iris 
data, the KDD 1999 data, and the Vesta transaction data. 

5.1. Evaluation metrics 

The outputs of a prediction or detection model fall into four 
categories: true positive (TP), true negative (TN), false positive (FP), 
and false negative (FN). TP and TN are correct prediction or 
detection while FP and FN are incorrect prediction or detection. 
The evaluation metrics includes: accuracy, precision, recall, and 
receiver operating characteristic (ROC) curve. They are calculated as 

Accuracy = 

Precision = 

TP+TN 
TP+TN+FP+FN 

TP 
TP+FP 

n 

n 
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Recall = TP 
TP+FN 

The three metrics describe the percentage of correct predic-
tion. However, none of them alone can represent the performance 
of an algorithm. A high accuracy may not represent a better result 
because the cost of incorrect predictions of positive data and 
negative data are usually different. A high accuracy result may 
have a low recall. A high recall may not indicate a good result 
either because the recall can easily increase by decreasing the 
precision. A high precision result may come with a very low 
recall. ROC curve [11] is a graphical plot of the TP vs. FP rate as the 
threshold of the classification varies. It illustrates the trade-off 
between TP rate and FP rate. 

5.2. Iris data 

Iris data is a data set with 150 random samples of flowers from 
the iris species setosa, versicolor, and virginica. From each species 
there are 50 observations for sepal length, sepal width, petal 
length, and petal width in cm. The data set contains three classes. 
Each class refers to a type of iris plant. In the three classes, one 
class is linearly separable from the other two classes; the latter 
are not linearly separable from each other. 

We initialized the number of clusters of SICLN, the ICLN and 
k-means to 5. Since the number of neurons in the SOM had to 
form a rectangle, we select 6 as its initial number, e.g. 3 x 2. 
Fig. 12 shows the performance comparison of these algorithms. 
The SICLN outperforms the others in accuracy. The performance 
of the ICLN and the SOM are almost identical. The k-means has 
the lowest accuracy. 

To test SICLN's capability of deal with missing labels, we 
masked some of the labels. We randomly masked 100%, 70%, 
50%, 30%, and 20% labels in the iris data set and applied the SICLN 
on them. Fig. 13 shows performance results. The SICLN become 
the ICLN when 100% labels are missing. The result is exactly the 
same as the ICLN. The performance of the SICLN become better 
with the increase of the available labels. When there are enough 
labeled data to guide the clustering procedures (less than 20% 
labels were missing for the case of Iris data), the SICLN reached its 
highest performance. 

In another experiment we tested the SICLN's ability of adapt-
ing to different initial number of weight vectors. The SICLN was 
initialized to 1, 3, 5, 8,10, and 15 neurons. The SICLN consistently 
resulted in five clusters. 

5.3. Network intrusion detection: KDD-99 data 

The KDD-99 data set was used for the Third International 
Knowledge Discovery and Data Mining Tools Competition. This 

Fig. 13. Performance of the SICLN on Iris data wi th missing labels. 

k-Means SOM ICLN SICLN 

Fig. 12. Performance compar ison on the Iris data. 

Fig. 14. Performance comparison on KDD99 data. 

data set was acquired from the 1998 DARPA intrusion detection 
evaluation program. There were 4,898,431 connection records, of 
which 3,925,650 were attacks. Each data point is a network 
connection, which is represented by 41 features, including the 
basic features of the individual connections, the content features 
suggested by the domain knowledge, and the traffic features 
computed using a 2-s time window [16]. Each connection is 
labeled as "normal" or a particular type of the attacks: neptune, 
smurf, ipsweep, or back DoS. The nature of these attacks are 
described in [24,26]. From this data set, 501,000 records were 
chosen in our experiment. The selected connections were further 
split into the training set and the test set, containing 101,000 and 
400,000 connections, respectively. 

The performance comparison is shown in Fig. 14. The SICLN is 
better than the other algorithms in three evaluation metrics. The 
ROC curves are illustrated in Fig. 15. It shows that all of them have 
good performance. In addition, the results of the SICLN shows its 



capability to distinguish small population classes when we brake 
down the results into individual class level as shown in Table 1. 
Attack type neptune and ipsweep have only 0.03% and 0.91% of 

Fig. 15. ROC curves of SICLN, k-means, SOM, and ICLN on KDD-99 data. 

Table 1 
Misclassify rate on individual class. 

Class Popul. (%) Misclassify rate (%) 

k-Means SOM ICLN SICLN 

Normal 77.12 0.42 0.33 0.42 0.32 
Neptune 0.03 100 100 100 0 
Smurf 21.88 0 0 0 0 
Ipsweep 0.91 7 7 7 3.2 
Back 0.06 100 100 100 100 

the population in the data set, and they are similar to each other. 
Although these neptune and ipsweep connections are detected as 
attacks in all algorithms, k-means, the SOM, and the ICLN are not 
able to distinguish these two attack types from each other. The 
SICLN outperformed k-means, SOM, and ICLN in terms of mis-
classification rate. The capability of knowing the types of the 
attack bring better automatic solutions or treatments. The clus-
tering detail also shows that the SICLN has the capability to 
distinguish clusters of small population. 

We also masked some of the labels to test whether the SICLN 
can deal with missing labeled data. The results show that when 
all label are missing, SICLN becomes an ICLN. The performance 
reaches the highest point as more than 70% labels are available. 
We tested the SICLN's capability to adapt to different initial 
number of weight vectors as well. Starting from the initialized 
number of 1, 5, 10, 15, 20, or 30 neurons, the SICLN consistently 
converged to 10 clusters. 

5.4. Fraud detection: credit card payment data 

The data we used for this experiment is the fraud detection 
data from Vesta Corporation. The data contain credit card trans-
actions of calling cards of a telecommunication company. Vesta 
corporation is an innovator and worldwide leader in virtual 
commerce with headquarter in Portland, Oregon, USA. The com-
pany is servicing most major US telecommunications carriers, 
including AT&T, T-Mobile, Cricket, Verizon, and Sprint. 

Fig. 16 shows the data flow for fraud analysis. The on-line 
transaction processing (OLTP) servers transfer data to the on-line 
analytical processing (OLAP) data warehouses, on which data 
mining tasks for fraud detection and business analysis are per-
formed. Front end OLTP data are integrated to data warehouse in 
analysis servers through the backup servers in a daily frequency. 
Data mining and analysis tasks are performed in analysis servers by 
risk management using Microsoft SQL and SAS Enterprise Miner. 

Fig. 16. Data flow of Vesta data for fraud analysis. 
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The data used in this experiment are a portion of credit card 
payment transactions of one of vesta's telecommunication partner. 
This data set contains three months transaction history of 206,541 
credit cards, in which 204,078 are normal and 2463 are fraudulent. 
By combining business knowledge, simple statistics, and statistics 
measures, 21 variables were selected from the raw data. 

As stated in Section 1, data in fraud detections are highly 
skewed. There are many more good events than fraudulent 
events. In fraud detection, recall rate is more important than 
the overall accuracy and precision. Accuracy alone cannot reflect 
the quality of the algorithms because simply predicting that all 
transactions are good events, although this is equivalent to not 
detecting fraud at all can still gets high accuracy. In this case, the 
native ratio of fraud against normal is around 1.2%. The accuracy 
can be 98.8% if simply guessing every transaction is normal. 
However, our goal is to detect as many frauds as possible, while 
keeping false positive rate at a certain acceptable level. Table 2 
shows the experimental results on Vesta data. The recall rate of 
the SICLN is about 20% higher than the others. ROC curve is a 
better tool for performance comparison in this case. Fig. 17 shows 
the improvement of the SICLN by the comparison of the ROC 
curves of the SICLN, k-means, the SOM, and the ICLN. 

5.5. Discussions 

The small size and low dimension of the Iris data make it 
possible to provide visible learning process of the algorithms. 
KDD-99 data and Vesta data test the algorithms' scalability and 
capability of dealing with real-world data. 

The SICLN outperforms the other algorithms on all of these 
three data sets. The improvement is more noticeable when data 
points of different classes are very close. Furthermore, the SICLN 

Table 2 
Experimental result on Vesta data. 

Algorithm Number of 
clusters 

Accuracy (%) Recall (%) Precision (%) 

k-Means 12 97.4 60.7 25.7 
SOM 13 97.8 54.8 27.8 
ICLN 12 97.8 57.4 28.4 
SICLN 12 97.4 79.1 28.8 

0.2 0.4 0.6 0.8 

Fig. 17. ROC curves of SICLN, k-means, SOM, and ICLN. 

is completely independent from the initial number of clusters 
since its reconstruction step is able to rebuild the structure of 
itself based on the data labels. Meanwhile, The SICLN's capability 
of dealing with missing data is also demonstrated in these 
experiments. The clustering performance of the SICLN improves 
when available number of labels increases and it reaches the 
highest point when about 70% of data points are labeled. This 
feature makes the SICLN an ideal candidate of algorithms for 
fraud detection and network intrusion detection since there are 
always a certain amount of unlabeled and delay labeled data in 
these domains. 

6. Conclusion and future work 

We have proposed and developed two clustering algorithms: 
(1) ICLN, an unsupervised clustering algorithm improving from 
the standard competitive learning neural network, and (2) The 
SICLN, a supervised clustering algorithm, which introduces super-
vised mechanism to the ICLN. 

The ICLN improves the SCLN by modifying its update rule from 
the reward only rule to the reward-punishment rule. The new 
update rule increases the stability and speeds up the training 
process of the ICLN. Furthermore, the number of final clusters of 
the ICLN is independent from the number of initial network 
neurons since the redundant neurons will be finally excluded 
from the clusters by the punishment rule. 

The SICLN is a supervised clustering algorithm derived from 
the ICLN. The SICLN utilizes labeled data to improve the clustering 
results. The SICLN modifies the learning rule of the ICLN to train 
on both labeled and unlabeled data. Furthermore, the SICLN adds 
the reconstruction step to the ICLN to merge or split the existing 
weight vectors for the clustering task. The reconstruction step 
enables the SICLN to become completely independent from the 
number of initial clusters. An objective function which combines 
the purity and scattering of the clusters is used in the SICLN to 
optimize the misclassification rate and the number of clusters. 

We compared the performance of the SICLN and the ICLN with 
the k-means and the SOM using three data sets: Iris data, KDD-99 
data, and credit card payment data. The ICLN achieve similar 
accuracy as the other traditional unsupervised clustering algorithms. 
The SICLN outperforms the other algorithms in all three data set and 
exhibits the following advantages: (1) achieves low misclassification 
rate in solving classification problems; (2) is able to deal with both 
labeled and unlabeled data; (3) has the capability to achieve high 
performance even when part of data labels are missing; (4) is able to 
classify highly skew data; (5) has the capability to identify unseen 
patterns; (6) is completely independent from the initial number of 
clusters. The experimental comparison demonstrates the SICLN has 
excellent performance in solving classification problems using 
clustering approaches. The advantages list above recommend the 
SICLN could be an ideal algorithm for fraud detections and network 
intrusion detections. 

The following are the future improvements and directions of 
this research: 

• A better estimation method for the reconstruction step may 
improve the efficiency of the SICLN. If there is a more accurate 
method to estimate the objective function value, the SICLN 
could be able to converge faster to the final result. 

• Further improvement may be done to avoid local optimization. 
Although the reconstruction step, the selection of learning 
rate, and the use of weight decay can reduce the chance of 
ending to local optimal point for the SICLN. The current SICLN 
does not guarantee avoiding local optimization. Further 
research may improve the SICLN from this prospect. 



• SICLN has the potential to be modified to an incremental 
training algorithm although the current SICLN is designed for 
batch training. An incremental training approach will improve 
the fraud detection or network intrusion detection system to 
be an automatic adaptive system without or with small 
amount of human interaction. 

• Introducing fuzzy logic [9] will be a potential big improvement 
to the SICLN. The difference between the fuzzy clustering 
and from the traditional clustering is that the output of 
the fuzzy clustering is the membership function that associ-
ates each data point to each cluster. Fuzzy result is helpful 
for fraud detections and network intrusion detections to 
specify the likelihood of an activity being a fraud or intrusion 
event. Knowing the possibility of an activity being a fraud or 
intrusion event can guide the system to perform proper 
reactions. 
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