
Neurocomputing 7 (2013) 135-145

N E U R O C O M P U T I N G

ELSEVIER

Contents lists available at SciVerse ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate/neucom

Improved competitive learning neural networks for network intrusion
and fraud detection
John Zhong Leia, Ali A. Ghorbanib,n

a Vesta Corporation, Portland, OR 97229, USA
b Faculty of Computer Science, University of New brunswick, Fredericton, NB, Canada E3B 5A3

A R T I C L E I N F O A B S T R A C T

Available online 22 Augus 2013

Keywords:
Competitive learning
Fraud detection
Intrusion detection
Supervised/unsupervised clustering
Neural network

In this research, we propose two n e w clustering algorithms, the improved competit ive learning ne twork
(ICLN) and the supervised improved competit ive learning network (SICLN), for fraud detection and ne twork
intrusion detection. The ICLN is an unsupervised clustering algorithm, which applies n e w rules to the standard
competit ive learning neural network (SCLN). The network neurons in the ICLN are trained to represent the
center of the data by a n e w reward-punishment upda te rule. This n e w upda te rule overcomes the instability
of the SCLN. The SICLN is a supervised version of the ICLN. In the SICLN, the n e w supervised upda te rule uses
the data labels to guide the training process to achieve a be t te r clustering result. The SICLN can be applied to
bo th labeled and unlabeled data and is highly tolerant to missing or delay labels. Furthermore, the SICLN is
capable to reconstruct itself, thus is completely independent f rom the initial number of clusters.

To assess the proposed algorithms, we have performed experimental comparisons on bo th research data
and real-world data in fraud detection and network intrusion detection. The results demons t ra te tha t bo th the
ICLN and the SICLN achieve high performance, and the SICLN outperforms traditional unsupervised clustering
algorithms.

 2013 Elsevier B.V. All rights reserved.

1. Introduction

Fraud detections and network intrusion detections are extre-
mely critical to e-Commerce business. According to U.S. census
bureau retail e-Commerce sales reports, e-Commerce in North
America has continued to grow 20% or more each year. However,
fraud costs e-Commerce companies in U.S. and Canada an
overwhelming lost each year. With the recent growth of the
e-Commerce, credit card fraud has become more prevalent. Based
on the survey results in 2009, on average, 1.6% of orders proved to
be fraudulent, which is about $3.3 billions. In addition to the
direct losses made through fraudulent sales, fraud victims' trust
in both the credit card and the retail company decreases, which
further increases the loss. It is the intent of the companies and the
credit card issuers to detect or prevent fraud as soon as possible.
Network intrusions, on the other hand, attack e-Commerce companies
from their back. Any down time of Web servers or leaks of business or
customer information may cost huge loss.

Both the credit card fraud-detection and network intrusion
detection domains present the following challenges to data mining:

• There are millions of transactions each day. Mining such massive
amount of data requires highly efficient techniques.

n Corresponding author.
E-mail addresses: john.lei@trustvesta.com (J.Z. Lei),

ghorbani@unb.ca (A.A. Ghorbani).

• The data are highly skewed. There are many more good events
than bad events. Typical accuracy-based mining techniques
may generate highly accurate detectors by simply predicting
all transactions legitimate but these detectors cannot detect
fraud at all.

• Data labels are not immediately available. Frauds or intrusions
usually are aware after they have already happened.

• It is hard to track users' behaviors. All types of users (good
users, business, and fraudsters) change their behaviors quite
often. Finding new or changing patterns is as important as
recognizing old patterns.

In this research we propose two clustering algorithms for fraud
detection and network intrusion detection: the improved competi-
tive learning network (ICLN) [20] and the supervised improved
competitive learning network (SICLN). The ICLN is an unsupervised
clustering algorithm developed from the standard competitive
learning network (SCLN) [15]. The SICLN is a supervised clustering
algorithm derived from the ICLN. Our goal is to develop advance
machine learning techniques to solve the practical challenges in
network intrusion detections and fraud detections.

Fig. 1 is an example of a fraudulent event. If credit card informa-
tion of a card holder is stolen and uses for online shopping, it will
take a few days for this transaction to appear on the credit card
statement, and take a few more days or a few months for the real
card holder to know and report to the bank. It will take a few other
days for the bank to sent a notice to the retail company. Usually

http://www.elsevier.com/locate/neucom
http://www.elsevier.com/locate/neucom
mailto:john.lei@trustvesta.com
mailto:ghorbani@unb.ca

136

Fig. 1. Fraud report procedure.

would have been happened and the patterns could have been
changed at the time they are found.

The ability to learn from unlabeled data and deal with
abnormal data makes clustering a good candidate for network
intrusion detection and fraud detection. However, on the other
hand, a clustering algorithm may not produce desirable clusters
without additional information. Fig. 2 is an example. Clustering
result illustrated in Fig. 2(a) is perfect in terms of unsupervised
learning. The data points are grouped into clusters based on their
natural similarities. However, the actual desirable clustering
result is in Fig. 2(b) if we know the data labels. Guided by all or
a portion of data labels, a clustering algorithm could achieve this
desirable result. Based on the potential to combine the strength of
classification and clustering, supervised clustering technique is
therefore applied to our research.

Fig. 2. Nature clustering result vs. desirable result. (a) Unsupervised clustering
when the labels of data points are unknown or unused. (b) Desirable clustering
when the labels of data points are known.

orders are considered as good before being reported as frauds. They
are deemed to be fraud once the company receives fraud reports. The
time gap from the date of an order to the date of the fraud report
leads to mislabeled data. Mislabeled data could introduce noise to the
supervised leaning. Waiting for a few months until most of the fraud
reports are completed might reduce the mislabeled noise, but lose

2. Background

The techniques for fraud detection and intrusion detections
fall into two categories: statistical techniques and data mining
techniques. Traditional methods of network intrusion detection
are based on the saved patterns of known events. They detect
network intrusion by comparing the features of activities to the
attack patterns provided by human experts. One of the main
drawbacks of the traditional methods is that they cannot detect
unknown intrusions. Moreover, human analysis becomes insuffi-
cient when the volume of the activities grows rapidly. This leads
to the interest in data mining techniques for fraud detection and
network intrusion detection [10,19].

Data mining based network intrusion detection techniques can
be categorized into misuse detection and anomaly detection [19].
The misuse detection techniques build the patterns of the attacks
by the supervised learning from the labeled data. The main
drawback of the misuse detection techniques is that they cannot
detect new attacks that have never occurred in the training data.
On the other hand, the anomaly detection techniques establish
normal usage patterns. They can detect the unseen intrusions by
investigating their deviation from the normal patterns.

The artificial neural networks provide a number of advantages
in fraud detection and network intrusion detection [5]. The
applications of the neural network techniques includes both the
misuse detection models and the anomaly detection models
[18,25]. A multi-layer perceptron (MLP) was used in [13] for
anomaly detection. A single hidden layer neural network was
used and tested on the Defense Advanced Research Projects
Agency (DARPA)1998 data. The MLP was applied in [22]. The
back-propagation algorithm was used in the learning phase to
adapt the weights of the neural network. As an unsupervised
neural network, the self-organizing maps (SOM) has been applied
in anomaly detection. It implicitly prepares itself to detect any
aberrant network activity by learning to characterize the normal
behaviors [25]. The SOM was also applied to perform the cluster-
ing of network traffic and to detect attacks in [14]. The SOM was
designed to learn the characteristics of normal activities in [12].
The variations from normal activities provided an indication of a
virus. The unsupervised niche clustering (UNC), a genetic niche
technique for unsupervised clustering was applied to the intru-
sion detection in [21]. Each cluster evolved by the UNC was
associated with a membership function that followed a Gaussian
shape. Using the normal samples, the UNC generated clusters
summarizing the normal space.

A hybrid artificial intelligent system is presented in [23]. An
unsupervised neural model was embedded in a multi-agent system
for network intrusion detection. Hybrid learning approaches [1,8]
integrate different learning and adaptation techniques to overcome

individual limitations. Combining the strength of two or multiple
approaches could achieve high efficiency. A hybrid model of the
SOM and the MLP was proposed in [5]. The SOM was combined with
the feed-forward neural network to detect the dispersing and
possibly collaborative attacks.

Traditional fraud detection approaches face the same problems as
traditional methods of network intrusion detection. Fraud detection
analysis is conducted by fraud specialist by comparing the fraud
activities with normal transactions. Human analysis becomes insuffi-
cient as the volume of the transactions grows up rapidly. Moreover,
traditional fraud detection is not receptive to new or changing
patterns. Data mining based fraud detections are also categorized
into misuse detection and anomaly detection. There have been many
commercial data mining tools available. The following commercial
tools are on the top level: SAS Enterprise Miner, SPSS Clementine, and
IBM DB2 Intelligent Miner. These commercial tools can be used
effectively for discovering patterns in data. There are less research
reports on fraud detection than those on network intrusion detection
despite their similarity. This is simply because financial data usually
do not open to the public like KDD99 data for network intrusion
detection and are hard to acquire. Decision trees are used in [6] for
fraud detection. Their approach divided the large data set of labeled
transactions into smaller subsets. Then it used decision tree to
generate classifiers in parallel and combined the resultant base
models by metal-earning [7] from the classifiers' behavior to generate
a meta-classifier. Brause et al. [3] combined radial basis function
network and rule-based information for credit card fraud detection.

3. Improved competitive learning network

The ICLN is developed from the SCLN. It overcomes the
shortages of instability in the SCLN and converges faster than
the SCLN. Therefore it obtains a better performance in terms of
the computational time.

3.1. The limitation of SCLN

The SCLN consists of two layers of neurons: the distance measure
layer and the competitive layer. The structure of SCLN is shown in
Fig. 3. The distance measure layer consists of m weight vectors
W = {w1,w2, ...,wm}. When a training example is presented, the
distance measure layer calculates the distance between the weight
vectors and the training example. The distances calculated in the
distance measure layer become the input of the competitive layer.
The competitive layer finds out the closest weight vector of the
training example. The output of the competitive layer is a 1 x m
vector. Each bit of the output vector is either 0 or 1, representing the
competitive result of the weight vectors. For example, if neuron wj
won the competition, output would be a 1 x m vector with y(j) = 1
and y(i) = 0 8i a j. The winning weight vector wj is then rewarded to
be closer to the training sample. Every time the winning weight
vector moves towards a particular sample. The other unwon weight
vectors will remain unchanged. This process is repeated for all the
training samples for many iterations. Eventually each of the weight
vectors would converge to the centroid of a cluster.

The update rule of the SCLN is called ''winer takes all''. That
means only one wining neuron updates itself each time when a
training example is presented. The wining neuron would update
itself to move closer to the training sample once it won the
competition. The update is calculated by the standard competitive
learning rule:

wj(r +1) = wj(r) + z(r)(x-wj(r)) (1)

where wj is the weight vector of the winning neuron j, and Z is the
learning rate. Only one wining neuron updates itself once in a
time. The essence of competitive learning is illustrated in Fig. 4.

The performance of the SCLN relies on the number of initial
neurons and the value of their weight vectors. Once the number
of output neurons is set, the number of clusters is also pre-
determined regardless of data distribution. On the other hand,
different initial weight vectors may lead to different number of
final clusters because the update function in Eq. (1) only changes
the weight vector of the winning neuron toward its local nearby
examples. Fig. 5 shows a scenario that reveals the limitations of
the SCLN. In this example, two neurons are initialized close to one
cluster. Both of them will stay in the clustering result since SCLN
is a reward only algorithm. The SCLN clustering result of this
example will be four clusters although only three clusters are
expected as shown in Fig. 5(b).

O O Q

o

o

o O o
o

o

O o
o o 0
0 ° 0 ^ [w]

° o o °
oQo O

u o o o
o o n

° o °

o o •
o ° o

O ° o O
O o o 0

w j Weight Vector

o Training Example

o

O O

o l w

O o

o

o

o o
o

o

° 8 g t 4 o °

° O o °

O n O
w b o 0

O ° o O

o o o

w j Weight Vector

O Training Example

Fig. 3. The SCLN consists of two layers of neurons: the distance measure layer and
the competitive layer. Fig. 4. The principle of the SCLN. (a) Initial weight vectors. (b) Clustering result.

138

Fig. 5. The drawback of the SCLN. (a) Initial weight vectors. The performance of
the SCLN depends heavily on the number of the initial neurons and their initial
weight vectors. (b) Clustering result. The left lower cluster is separated into two
groups since two weight vectors are initialized close to one cluster.

3.2. New update rules in ICLN

The ICLN changes the SCLN's reward-only rule to reward-
punish rule. The winning neuron updates its weight vector by the
same update rule in Eq. (1). This updated process is also called
reward as the wining neuron is updated toward the training
example. At the same time, the other neurons also update their
weight vectors by

wj(r+1)= w,(r)-Z2(r)K (d(xj))(x-wj(r)) (2)

where K(d(x,j)) is a kernel function in which d(xj) is the distance
between neuron j and the input x, and Z2 is the learning rate. This
update process is called punish as the neurons are updated to
move away from the training example. There are various choices
of the kernel function K(d(x,j)), such as the inverse distance, the
triangular kernel, the quadratic kernel, and the Gaussian ker-
nel [2]. A kernel function obtains the maximum value at zero
distance, and the value decays as the distance increases. A good
kernel function smooths and regulates the updated value.

The effect of the reward-punishment update rules is shown in
Fig. 6. The two weight vectors at the left bottom of Fig. 5(a) compete
against each other when applying ICLN. The punish rule pushes the

losing weight vectors away from the cluster and one of them will
finally be removed from the cluster. Furthermore, since the distance
between the training example and all of the weight vectors are
always calculated for the competition, using these values to apply
punish rules to the losing weight vectors will accelerate the
clustering process without additional calculations.

3.3. The ICLN algorithm

The ICLN algorithm is outlined in Fig. 7. The ICLN first
initializes k neurons. Two methods can be used for the initializa-
tion. One is to assign the k neurons with k random training
examples. The other is to assign the center point, i.e. the mean, of
the whole training data to all k neurons. Center point initializa-
tion takes more iterations to converge than random one. The
number of clusters k is usually set to a number bigger than the

Fig. 6. The effect of the ICLN update rules.

Inpu t : X — {xi,x2,. • - t h e input da tase t
O u t p u t : W = {i«i, k>2, . . . , uiit}: the weight vectors
B E G I N
1. Randomly initialize the weight vectors W = { w i , w 2 , . . ; }
2. Se tup t h e learning ra tes rji a n d 172 for t h e winning neuron

a n d the losing neurons, respectively. 0 < rfc < 771 < 1.
3 . Se tup t h e min imum weight u p d a t e value Ta
4 . Select Kernel funct ion: K{d{xi ,Wj)) = e r ^ ' ^ ^
5. Se tup m a x i m u m number of i terat ions Mepoch
r e p e a t

f o r Xi £ X d o
for wj € W d o

compute t h e dis tances: d(xi, 11)=|| — Wj ||
end for
uw = Wa if a = arg min* =1 d(wm, z ;)
/ • U p d a t e w w (n * /

W^in = Wnin + Vl(%i ~ Wwin)
/ • U p d a t e o ther weight vectors w € W A w wwin */

w = w — rkK(d(Xi, w))(Xi — w)
e n d for

until |Aui| < Ta Vtnei^or (#iteration > M^h)
Remove all weight vectors t h a t have no associated input .
E N D

Fig. 7. Algorithm: the improved competitive learning network.

expected number of clusters because the ICLN can reduce the
number of clusters but cannot add new cluster to the network.

The ICLN trains the initial weight vector W = {w1,w2, ...,wk}
by randomly presenting the training examples X = {x1 ,x2 , . . . ,xn}.
When a training example x is presented to the ICLN, the weight
vectors compete to each other by comparing their distance, such
as Euclidean distance, to x. Only one weight vector with the
minimum distance to x wins the competition:

wWi„(x) = Wj if j = arg min d(wi,x)
i 1

(3)

The wining weight vector is then updated by the reward function
as in Eq. (1). At the same time, other weight vectors in the
network are updated by the punishment function as in Eq. (2).
The result of this reward-punishment rule is that the wining
neuron is updated to be closer to the training example and the
other neurons are updated away from the training example.

After the network finishes learning from x, another training
example will be presented to the network. The network will then
compete and learn from this new training example. The ICLN
iterates the learning process until one of the stopping criteria are
satisfied. One criterion is that the maximum update to weight
vector W is less than a preset minimum update threshold:

max l l w i (r) - w i (r - 1) l l < T D
i = 1

(4)

where wi(r) is the weight vector wi in the current iteration,
w i (r -1) is the weight vector w i in the previous iteration, and TD

is the preset minimum update threshold. The other criterion is
that it finishes the preset maximum number of iterations.

4. Supervised improved competitive learning network

The SICLN is a supervised clustering algorithm derived from
the ICLN. When data labels are available, the SICLN uses them to
guide the clustering procedure.

4.1. The objective function

The SICLN uses an objective function Obj(X,W) to measure the
quality of the clustering result. The purpose of the objective function
is to minimize the impurity of the result clusters and keep a
minimum number of clusters. The objective function is defined as

Obj(X, W) = a x Imp(X, W)+b x Sct(X,W) (5)

where a and b are the weights of impurity and scattering respec-
tively, and a+b = 1.

The impurity of the whole result is the weighted average of the
impurity of each cluster:

Imp(X,W) = Ei = 1 |wi | x Imp(X,Wi)

where n is the count of the data set X and | wi | is the count of the
cluster members of W,-. One common choice of the impurity
function is the misclassification rate. If a cluster contains mem-
bers that are labeled as classes {c1 ,c2 , . . . ,c,}, the misclassification
rate of this cluster is the percentage of members that are not
labeled as the dominate class. The dominate class of a cluster is
defined as the most frequent class of its members. For a data set
X = {x1,... ,xn} which are labeled as classes C = {c1,...,ct}, cj is the
dominate class of wi if the count of members of wi belong to class
cj is more than those belong to any other class

DomC(w) = cj

if #(x A cj) > #(x2cj; x A w,) 8x A w

where # denotes the count. Similarly, the second dominate class
Dom2C(w) is the class that has more members than other classes
except the dominate class. The misclassification rate of cluster of
weight vector wi is computed as

Misrate(wi) = #(x2DomC(Wi); x A W,)

H
(7)

where 9wi9 is the count of the members of wi.
When misclassification rate is chosen as the impurity function,

according to Eqs. (6) and (7), the impurity is calculated as

E f = 1 | w i | X
Imp(X,W)=•

#(x2DomC(wt)) Iw-9

E?= 1 #(x==DomC(wi)) (8)

An alternative to misclassification rate is the GINI impurity
measure. The GINI impurity measure was first used in classifica-
tion and regression trees (CART) [4] and has been widely used to
determine the purity of split in decision trees. The GINI of a
weight vector wi is computed as

Gini(w) = 1- ± (# (x A c; x A wi)

j = 1 H
(9)

where cj is the class of members of wi from j = 1; 2 ; . . . ; t, and | W, |
is the size of wi. A smaller GINI indicates a lower impurity. The
GINI value reaches its maximum if the members are equal popula-
tion in each class. By contrast, GINI value is 0 if all members belong
to one class. When GINI is chosen, according to Eqs. (6) and (9), the
impurity is calculated as

T,'i = 11 w , I X (1 - E j = 1

Imp(X,W)=•

#(x A cj; x A w,)

H
(10)

The second part of the objective function is the scattering. A
simple choice of the scattering function is to compare the number
of clusters and the number of data points:

Sct(X,W) = \ —
n (11)

where t represents the number of classes of the data set X, n is the
number of data points, and i is the number of clusters. A bigger
scattering indicates a wider spread clustering. When the number
of clusters equals to the number of data points, scattering reach
its maximum. By contrast, if the number of clusters is the same as
the number of classes, scattering is 0. An alternative choice is to
use the size of each cluster:

(6) Sct(X,W) =
i 1

V ^ x(k-t)
t=\ 1 w i 1 ()

(12)

Scattering is bigger when the variance of the size of the clusters
are bigger. Eliminating small size clusters will minimize this
clustering function.

For fraud detection and intrusion detection, we chose mis-
classification function as the impurity function since it is easy to
set up by business goal. We choose the first scattering function
because the alternative choice intent to remove small size
clusters but fraud and intrusion are usually in small size clusters.
Combining Eqs. (5), (8) and (11), the following objective function
is chosen to evaluate the quality of a clustering result.

Obj(X,W) = a x Tkk= 1 #(x==DomC(w,)) + b x\ n (13)

k

n

n

140

where a is the weight of impurity, and b is the weight of
scattering. A smaller Obj(X,W) indicates a better clustering result.
Minimizing Obj(X,W) attains the best result. It means to minimize
both impurity and scattering. However, impurity and scattering
usually conflict to each other. Decrease of either one leads to
increase of the other.

4.2. The SICLN algorithm

The SICLN is outlined in Fig. 8. It first initializes k neurons. The
initialization methods of the SICLN are the same as those of the
ICLN. It is not as important because the network will be recon-
structed in training.

The SICLN also labels the weight vectors with their member
data points. In the SICLN, a weight vector is labeled to a class with
the biggest population of its cluster members. If all members are
in "unknown", this weight vector will be labeled as "unknown".
Fig. 9 illustrates how the initial weight vectors are labeled. w1 and
w5 are labeled as "Black" because their black point members are
more than gray point members. w2 and w4 are labeled as "Gray"
because gray points of their members are more than black points.
w3 is labeled as "unknown" because all of its members are missing
label. w6 is labeled as "unknown" because it has no data member.

The learning step of the SICLN is a revised version of the ICLN.
The output neurons compete to be active. Since labels are
available, The SICLN uses the labels to update the weight vectors.
In the new rule, only neurons with the same class as the training
example or "unknown" has the right to compete to win. Neurons
that are labeled as different class will lose. When a neuron won
the competition, its weight vector would be rewarded by the

Input: X = {xi,x2, • • . ,x„}\ the input dataset
Input: L(X) = {LIltLxlt..., i I n } : the label of the dataset
Input: C = {ci,c2,... ,Ct}- the classes of the dataset
Output: W = {wi, ii>2,... ,10*}: the weight vectors
Beg in
1 / / In i t ia l ize / /

1.1 Randomly initialize the weight vectors W = {u>i,W2,... ,v>k}
1.2 Setup other parameters such as learning rate, Kernel function,

objective thresholds, iteration limit
2 //Training//
repeat

2.1 Identify members of W
1.1 Label W with their dominate class.
2.3 / /Lea rn ing / /
for V i e X d o

2.3.1 Look for wining weight vector wwi„ regarding input x
2.3.2 Update wwiTl with reward function
2.3.3 Update other w w^m with punishment function

end for
2.4 If objective threshold is satisfied, stop
2.5 Split weight vector w €W \f estimate objective function value

is higher than before splitting. Construct new vectors W = W.^
2.6 / /Learning (same as 2 .3) / /
for V i e X d o

2.6.1 Look for wining weight vector wwin regarding input x
2.6.2 Update t u ^ with reward function
2.6.3 Update other w ^ ww i n with punishment function

end for
2.7 Merge weight vector Wi and Wj if estimate objective function value

is higher than before merging and they are the same class and closer
to each other than any other weigh vectors. Construct new vectors

until Object function is satisfied or iteration exceeds limit
3 Remove all weight vectors that have no member data point.
4 Output W — {iii],i02,--• ,iiifc}
E n d

Fig. 9. The SICLN labels the weight vectors with their member data points.

Fig. 10. The reconstruction process of the SICLN.

same update rule as Eq. (1) in the ICLN. The punishment update is
also the same as the ICLN in Eq. (2).

In the SICLN, when a labeled training example is presented to
the network, only the neurons of the same class or "Unknown"
class are able to win to get the reward. However, if an unlabeled
training example is presented to the network, all neurons in the
network have the ability to compete to get reward or punish. In
this case, the learning step of the SICLN becomes the same as that
of the ICLN. If all training examples in the data set are unlabeled,
all train data and weight vectors belong to "unknown" class. At
this point, the SICLN becomes an ICLN.

After the learning step, the SICLN will reconstruct a new
network based on the trained network. In the reconstruction
step, a neuron is split into two new neurons if it contains many
members belonging to other classes. On the other hand, two
neighboring neurons are merged into one if they belong to the
same class. Fig. 10 illustrates the reconstruction step of the SICLN.

The split process starts from the clusters with the maximum
impurity values. An estimated after split impurity is between the
after split impurity and the best possible impurity. For example, if
weight vector ws is split to two vectors ws1 and ws2 , the after split
impurity is

E k = 1 #(x==DomC(Wi))
Fig. 8. Algorithm outline: supervised improved learning competitive network.

Impafter (X,W) =

The best possible impurity is

Impbest (X,W) = Ei = i,i a s #(x==DomC(Wi))

+
#(x2DomCws,x2Dom2 C(ws)

The estimated value of the impurity after split is

imp(X,W) = Impafter(X,W)+y x (ImpbeSt(X,W)-ImpafKr(X,W))

where y is an estimate factor 0 < y < 1. The Scattering value after
split is

Sct(X,W) = ^ J k ^ —

The estimated objective function value is

Obj(X, W) = a imp(X, W)+b Sct(X, W)

If the estimated objective value is smaller than the objective value
before split, the weight vector will be split into two. The median
point of members of the dominate class and the median point of
the members of the second dominate class of the neuron are
selected to be the new neurons.

The merge process looks for the closest same class weight
vectors as the candidates. To find out two weight vectors that are
closer to each other than to any other weight vectors, we use the
mutual neighbor distance [17]. The mutual neighbor distance is

MND(wi,Wj) = NN(wi,Wj) + NN(Wj,wi) (14)

where NN(wi,Wj) is the neighbor number of neuron wj with
respect to neuron wi.

If MND(w-t ,w2) = 2 (e.g. NN(w1 ,w2)= 1 and NN(w2,w1) = 1), w1

and w2 are closer to each other than to any other weight vectors.
wi and wj are merged if they meet the following conditions: (1)
C(wi) = C(wj), (2) MND(wi,wj) = 2, (3) Obj(X,Ws) < Obj(X,W). The
new neuron takes the mean of wi and wj as its weight vector.

The reconstruction step creates a ' 'new'' network by splitting
or merging the weight vectors, driven by the objective function.
This ' 'new'' network will replace the old one to continue the
learning step. This learn—reconstruct iteration—repeats until one
of the following stopping criteria is satisfied: (1) the objective
function value satisfies the minimum threshold; (2) the training
reach the maximum number of iterations.

4.3. The SiCLN vs. the iCLN

0 ° O

o » o o ° o
o

o Q O

• ' " W O O
(W o ,

o ° O
O O
o o

o £ o
o

< w a

oo
o o o ^

° o #

o
. V

n 0 0

° O 0 o o
• o

~ o
o

o
°
o ° o O
o o o

| w) Weight Vector

| Training Example

o

o ^ #

° 0 0 0 ® ' o o
• °

O W5|) 0 O

O ° o O
o o o

I w] Weight Vector

| (') Training Example

Fig. 11. The ICLN vs. the SICLN. (a) ICLN: cluster data in its na tu re groups. Same
class data at the left bo t tom are cluster into two groups represented by weight
vectors w2 and w3. Data of different classes in the middle are clustered into one
group represented by weight vector w4. (b) SICLN: opt imize the puri ty of the
clusters and the n u m b e r clusters. Weight vector w4 in (a) is split into wb and wc to
maximize the puri ty of the clustering. Weight vectors w2 and w3 are merged to wa
to minimize the n u m b e r of clusters.

While ICLN has the capability to cluster data in its nature
groups. The SICLN uses labels to guide the clustering process. The
ICLN groups data into clusters by gathering closer data points into
the same group. As a supervised clustering algorithm, the SICLN
minimizes the impurity of the groups and the number of groups.

Fig. 11 shows the improvement from the ICLN to the SICLN.
The result of the ICLN is in Fig. 11(a). The data are identified in
their nature groups without looking at the data labels. Weight
vectors w2 and w3 become the cluster center of two groups of data
at the left bottom although both groups belong to the same class.
On the other hand, weight vector w4 represents the group of data
on the right upper, which contains data of two classes. The result
of the SICLN applying to the same data is in Fig. 11(b). Weight
vector w4 is split into wb and wc, which represent the centers of
two groups of data with different classes. Therefore, the purity of
the clustering result is higher than that of the ICLN. At the same
time, the SICLN attempts to result in less clusters while keeping
the same level of purity. Weight vectors x2 and w3 are merged to
wa. The new weight vector wa becomes the center data group
w2 + w3, which belongs to the same class.

5. Experimental comparisons

In this section, we compare the performance of the SICLN and
the ICLN with the k-means and SOM on three data sets: the Iris
data, the KDD 1999 data, and the Vesta transaction data.

5.1. Evaluation metrics

The outputs of a prediction or detection model fall into four
categories: true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). TP and TN are correct prediction or
detection while FP and FN are incorrect prediction or detection.
The evaluation metrics includes: accuracy, precision, recall, and
receiver operating characteristic (ROC) curve. They are calculated as

Accuracy =

Precision =

TP+TN
TP+TN+FP+FN

TP
TP+FP

n

n

142

Recall = TP
TP+FN

The three metrics describe the percentage of correct predic-
tion. However, none of them alone can represent the performance
of an algorithm. A high accuracy may not represent a better result
because the cost of incorrect predictions of positive data and
negative data are usually different. A high accuracy result may
have a low recall. A high recall may not indicate a good result
either because the recall can easily increase by decreasing the
precision. A high precision result may come with a very low
recall. ROC curve [11] is a graphical plot of the TP vs. FP rate as the
threshold of the classification varies. It illustrates the trade-off
between TP rate and FP rate.

5.2. Iris data

Iris data is a data set with 150 random samples of flowers from
the iris species setosa, versicolor, and virginica. From each species
there are 50 observations for sepal length, sepal width, petal
length, and petal width in cm. The data set contains three classes.
Each class refers to a type of iris plant. In the three classes, one
class is linearly separable from the other two classes; the latter
are not linearly separable from each other.

We initialized the number of clusters of SICLN, the ICLN and
k-means to 5. Since the number of neurons in the SOM had to
form a rectangle, we select 6 as its initial number, e.g. 3 x 2.
Fig. 12 shows the performance comparison of these algorithms.
The SICLN outperforms the others in accuracy. The performance
of the ICLN and the SOM are almost identical. The k-means has
the lowest accuracy.

To test SICLN's capability of deal with missing labels, we
masked some of the labels. We randomly masked 100%, 70%,
50%, 30%, and 20% labels in the iris data set and applied the SICLN
on them. Fig. 13 shows performance results. The SICLN become
the ICLN when 100% labels are missing. The result is exactly the
same as the ICLN. The performance of the SICLN become better
with the increase of the available labels. When there are enough
labeled data to guide the clustering procedures (less than 20%
labels were missing for the case of Iris data), the SICLN reached its
highest performance.

In another experiment we tested the SICLN's ability of adapt-
ing to different initial number of weight vectors. The SICLN was
initialized to 1, 3, 5, 8,10, and 15 neurons. The SICLN consistently
resulted in five clusters.

5.3. Network intrusion detection: KDD-99 data

The KDD-99 data set was used for the Third International
Knowledge Discovery and Data Mining Tools Competition. This

Fig. 13. Performance of the SICLN on Iris data wi th missing labels.

k-Means SOM ICLN SICLN

Fig. 12. Performance compar ison on the Iris data.

Fig. 14. Performance comparison on KDD99 data.

data set was acquired from the 1998 DARPA intrusion detection
evaluation program. There were 4,898,431 connection records, of
which 3,925,650 were attacks. Each data point is a network
connection, which is represented by 41 features, including the
basic features of the individual connections, the content features
suggested by the domain knowledge, and the traffic features
computed using a 2-s time window [16]. Each connection is
labeled as "normal" or a particular type of the attacks: neptune,
smurf, ipsweep, or back DoS. The nature of these attacks are
described in [24,26]. From this data set, 501,000 records were
chosen in our experiment. The selected connections were further
split into the training set and the test set, containing 101,000 and
400,000 connections, respectively.

The performance comparison is shown in Fig. 14. The SICLN is
better than the other algorithms in three evaluation metrics. The
ROC curves are illustrated in Fig. 15. It shows that all of them have
good performance. In addition, the results of the SICLN shows its

capability to distinguish small population classes when we brake
down the results into individual class level as shown in Table 1.
Attack type neptune and ipsweep have only 0.03% and 0.91% of

Fig. 15. ROC curves of SICLN, k-means, SOM, and ICLN on KDD-99 data.

Table 1
Misclassify rate on individual class.

Class Popul. (%) Misclassify rate (%)

k-Means SOM ICLN SICLN

Normal 77.12 0.42 0.33 0.42 0.32
Neptune 0.03 100 100 100 0
Smurf 21.88 0 0 0 0
Ipsweep 0.91 7 7 7 3.2
Back 0.06 100 100 100 100

the population in the data set, and they are similar to each other.
Although these neptune and ipsweep connections are detected as
attacks in all algorithms, k-means, the SOM, and the ICLN are not
able to distinguish these two attack types from each other. The
SICLN outperformed k-means, SOM, and ICLN in terms of mis-
classification rate. The capability of knowing the types of the
attack bring better automatic solutions or treatments. The clus-
tering detail also shows that the SICLN has the capability to
distinguish clusters of small population.

We also masked some of the labels to test whether the SICLN
can deal with missing labeled data. The results show that when
all label are missing, SICLN becomes an ICLN. The performance
reaches the highest point as more than 70% labels are available.
We tested the SICLN's capability to adapt to different initial
number of weight vectors as well. Starting from the initialized
number of 1, 5, 10, 15, 20, or 30 neurons, the SICLN consistently
converged to 10 clusters.

5.4. Fraud detection: credit card payment data

The data we used for this experiment is the fraud detection
data from Vesta Corporation. The data contain credit card trans-
actions of calling cards of a telecommunication company. Vesta
corporation is an innovator and worldwide leader in virtual
commerce with headquarter in Portland, Oregon, USA. The com-
pany is servicing most major US telecommunications carriers,
including AT&T, T-Mobile, Cricket, Verizon, and Sprint.

Fig. 16 shows the data flow for fraud analysis. The on-line
transaction processing (OLTP) servers transfer data to the on-line
analytical processing (OLAP) data warehouses, on which data
mining tasks for fraud detection and business analysis are per-
formed. Front end OLTP data are integrated to data warehouse in
analysis servers through the backup servers in a daily frequency.
Data mining and analysis tasks are performed in analysis servers by
risk management using Microsoft SQL and SAS Enterprise Miner.

Fig. 16. Data flow of Vesta data for fraud analysis.

144

The data used in this experiment are a portion of credit card
payment transactions of one of vesta's telecommunication partner.
This data set contains three months transaction history of 206,541
credit cards, in which 204,078 are normal and 2463 are fraudulent.
By combining business knowledge, simple statistics, and statistics
measures, 21 variables were selected from the raw data.

As stated in Section 1, data in fraud detections are highly
skewed. There are many more good events than fraudulent
events. In fraud detection, recall rate is more important than
the overall accuracy and precision. Accuracy alone cannot reflect
the quality of the algorithms because simply predicting that all
transactions are good events, although this is equivalent to not
detecting fraud at all can still gets high accuracy. In this case, the
native ratio of fraud against normal is around 1.2%. The accuracy
can be 98.8% if simply guessing every transaction is normal.
However, our goal is to detect as many frauds as possible, while
keeping false positive rate at a certain acceptable level. Table 2
shows the experimental results on Vesta data. The recall rate of
the SICLN is about 20% higher than the others. ROC curve is a
better tool for performance comparison in this case. Fig. 17 shows
the improvement of the SICLN by the comparison of the ROC
curves of the SICLN, k-means, the SOM, and the ICLN.

5.5. Discussions

The small size and low dimension of the Iris data make it
possible to provide visible learning process of the algorithms.
KDD-99 data and Vesta data test the algorithms' scalability and
capability of dealing with real-world data.

The SICLN outperforms the other algorithms on all of these
three data sets. The improvement is more noticeable when data
points of different classes are very close. Furthermore, the SICLN

Table 2
Experimental result on Vesta data.

Algorithm Number of
clusters

Accuracy (%) Recall (%) Precision (%)

k-Means 12 97.4 60.7 25.7
SOM 13 97.8 54.8 27.8
ICLN 12 97.8 57.4 28.4
SICLN 12 97.4 79.1 28.8

0.2 0.4 0.6 0.8

Fig. 17. ROC curves of SICLN, k-means, SOM, and ICLN.

is completely independent from the initial number of clusters
since its reconstruction step is able to rebuild the structure of
itself based on the data labels. Meanwhile, The SICLN's capability
of dealing with missing data is also demonstrated in these
experiments. The clustering performance of the SICLN improves
when available number of labels increases and it reaches the
highest point when about 70% of data points are labeled. This
feature makes the SICLN an ideal candidate of algorithms for
fraud detection and network intrusion detection since there are
always a certain amount of unlabeled and delay labeled data in
these domains.

6. Conclusion and future work

We have proposed and developed two clustering algorithms:
(1) ICLN, an unsupervised clustering algorithm improving from
the standard competitive learning neural network, and (2) The
SICLN, a supervised clustering algorithm, which introduces super-
vised mechanism to the ICLN.

The ICLN improves the SCLN by modifying its update rule from
the reward only rule to the reward-punishment rule. The new
update rule increases the stability and speeds up the training
process of the ICLN. Furthermore, the number of final clusters of
the ICLN is independent from the number of initial network
neurons since the redundant neurons will be finally excluded
from the clusters by the punishment rule.

The SICLN is a supervised clustering algorithm derived from
the ICLN. The SICLN utilizes labeled data to improve the clustering
results. The SICLN modifies the learning rule of the ICLN to train
on both labeled and unlabeled data. Furthermore, the SICLN adds
the reconstruction step to the ICLN to merge or split the existing
weight vectors for the clustering task. The reconstruction step
enables the SICLN to become completely independent from the
number of initial clusters. An objective function which combines
the purity and scattering of the clusters is used in the SICLN to
optimize the misclassification rate and the number of clusters.

We compared the performance of the SICLN and the ICLN with
the k-means and the SOM using three data sets: Iris data, KDD-99
data, and credit card payment data. The ICLN achieve similar
accuracy as the other traditional unsupervised clustering algorithms.
The SICLN outperforms the other algorithms in all three data set and
exhibits the following advantages: (1) achieves low misclassification
rate in solving classification problems; (2) is able to deal with both
labeled and unlabeled data; (3) has the capability to achieve high
performance even when part of data labels are missing; (4) is able to
classify highly skew data; (5) has the capability to identify unseen
patterns; (6) is completely independent from the initial number of
clusters. The experimental comparison demonstrates the SICLN has
excellent performance in solving classification problems using
clustering approaches. The advantages list above recommend the
SICLN could be an ideal algorithm for fraud detections and network
intrusion detections.

The following are the future improvements and directions of
this research:

• A better estimation method for the reconstruction step may
improve the efficiency of the SICLN. If there is a more accurate
method to estimate the objective function value, the SICLN
could be able to converge faster to the final result.

• Further improvement may be done to avoid local optimization.
Although the reconstruction step, the selection of learning
rate, and the use of weight decay can reduce the chance of
ending to local optimal point for the SICLN. The current SICLN
does not guarantee avoiding local optimization. Further
research may improve the SICLN from this prospect.

• SICLN has the potential to be modified to an incremental
training algorithm although the current SICLN is designed for
batch training. An incremental training approach will improve
the fraud detection or network intrusion detection system to
be an automatic adaptive system without or with small
amount of human interaction.

• Introducing fuzzy logic [9] will be a potential big improvement
to the SICLN. The difference between the fuzzy clustering
and from the traditional clustering is that the output of
the fuzzy clustering is the membership function that associ-
ates each data point to each cluster. Fuzzy result is helpful
for fraud detections and network intrusion detections to
specify the likelihood of an activity being a fraud or intrusion
event. Knowing the possibility of an activity being a fraud or
intrusion event can guide the system to perform proper
reactions.

Acknowledgments

The authors graciously acknowledge the funding from the
Atlantic Canada Opportunity Agency (ACOA) through the Atlantic
Innovation Fund (AIF) and through Grant RGPN 227441 from the
National Science and Engineering Research Council of Canada
(NSERC) to Dr. Ghorbani. The data sets for fraud detection used in
the experiments were collected in and provided by Vesta Cor-
poration, United States.

References

[1] A. Abraham, E. Corchado, J.M. Corchado, Hybrid learning machines, Neuro-
computing (13-15) (2009) 2729-2730.

[2] C.G. Atkeson, A.W. Moore, S. Schaal, Locally weighted learning, Artificial
Intelligence Review 11 (1-5) (1997) 11-73.

[3] R. Brause, T. Langsdorf, M. Hepp, Neural data mining for credit card fraud
detection, in: ICTAI, 1999, pp. 103-106.

[4] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression
Trees, Wadsworth International, 1984, pp. 21-28.

[5] J. Cannady, Artificial neural networks for misuse detection, in: Proceedings of
the 1998 National Information Systems Security Conference, Arlington, VA,
1998, pp. 443-456.

[6] P.K. Chan, W. Fan, A.L. Prodromidis, S.J. Stolfo, Distributed data mining in
credit card fraud detection, IEEE Intelligent Systems 14 (6) (1999) 67-74.

[7] P.K. Chan, S.J. Stolfo, Experiments in multistrategy learning by meta-learning,
in: Proceedings of the Second International Conference on Information and
Knowledge Management, 1993, pp. 314-323.

[8] E. Corchado, A. Abraham, A.C.P.L.F. de Carvalho, Hybrid intelligent algorithms
and applications, Information Science (14) (2010) 2633-2634.

[9] E. Czogala, J. Leski, Fuzzy and Neuro-fuzzy Intelligent Systems, Physica-
Verlag, Heidelberg, 2000, pp. 107-127.

[10] P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava, P. Tan, Data mining for
network intrusion detection, in: Proceeding NSF Workshop on Next Genera-
tion Data Mining, 2002, pp. 21-30.

[11] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd ed., Wiley-
Interscience, 2000, pp. 517-601.

[12] K. Fox, R. Henning, J. Reed, R. Simonian, A neural network approach towards
intrusion detection, in: Proceedings of the 13th National Computer Security
Conference, 1990, pp. 125-134.

[13] A.K. Ghosh, A. Schwartzbard, A study in using neural networks for anomaly
and misuse detection, in: Proceedings of USENIX Security Symposium, 1999,
p. 12.

[14] L. Girardin, An eye on network intruder-administrator shootouts, in: Pro-
ceedings of the Workshop on Intrusion Detection and Network Monitoring,
1999, pp. 19-28.

[15] J. Han, M. Kamber, in: Data Mining: Concepts and Techniques, Morgan
Kaufmann, 2000, pp. 335-385.

[16] S. Hettich, S.D. Bay, The UCI KDD archive, 1999, <http://kdd.ics.uci.edu>,
University of California Department of Information and Computer Science,
Irvine, CA, 2004, p. 1.

[17] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM Computing
Surveys 31 (3) (1999) 264-323.

[18] S.C. Lee, D.V. Heinbuch, Training a neural-network based intrusion detector
to recognize novel attacks, IEEE Transactions on Systems, Man & Cybernetics
Part A Systems & Humans 31 (4) (2001) 294-299.

[19] W. Lee, S.J. Stolfo, Data mining approaches for intrusion detection, in:
SSYM'98: Proceedings of the 7th Conference on USENIX Security Symposium,
1998, p. 6.

[20] J.Z. Lei, A. Ghorbani, Network intrusion detection using an improved
competitive learning neural network, in: Second Annual Conference on
Communication Networks and Services Research, 2004, pp. 190-197.

[21] E. Leon, O. Nasraoui, J. Gomez, Network intrusion detection using genetic
clustering, in: Genetic and Evolutionary Computation, vol. 3103/2004, 2004,
pp. 1312-1313.

[22] R.P. Lippmann, R.K. Cunningham, Improving intrusion detection performance
using keyword selection and neural networks, Computer Networks 34 (4)
(2000) 597-603.

[23] A. Herrero, E. Corchado, M.A. Pellicer, A. Abraham, MOVIH-IDS: a mobile
visualization hybrid intrusion detection system, Neurocomputing (13-15)
(2009) 2775-2784.

[24] S. Mukkamala, A. Sung, A. Abraham, Cyber security challenges: designing
efficient intrusion detection systems and antivirus tools, in: V. Rao Vemuri,
V. Sree Hari Rao (Eds.), Enhancing Computer Security with Smart Technology,
CRC Press, USA, 2005.

[25] B.C. Rhodes, J.A. Mahaffey, J.D. Cannady, Multiple self-organizing maps for
intrusion detection, in: Proceedings of the 23rd National Information
Systems Security Conference, 2000.

[26] E. Skoudis, Counter Hack: A Step-by-step Guide to Computer Attacks and
Effective Defenses, 2002.

John Lei is a senior analytic scientist and an analytic
platform manager at Vesta Corporation in Portland,
Oregon, USA. His research focuses on the development
of data mining, machine learning, and statistical mod-
eling techniques for fraud detection and business
intelligent in challenging real-world application con-
texts. John has an M.S. in Computer Science from the
University of New Brunswick in Canada and an M.S. in
Arts in Economics from Guangxi University in China.
John received his B.S. in Computer Science from The
University of Electronic Science and Technology of
China in 1990.

Ali Ghorbani has held a variety of positions in acade-
mia for the past 29 years including heading up project
and research groups and as department chair, director
of computing services, director of extended learning
and as assistant dean. He received his Ph.D. and
Master's in Computer Science from the University of
New Brunswick, and the George Washington Univer-
sity, Washington, DC, USA, respectively. Dr. Ghorbani
currently serves as Dean of the Faculty of Computer
Science. He holds UNB Research Scholar position. His
current research focus is Web Intelligence, Network
and Information Security, Complex Adaptive Systems,
and Critical Infrastructure Protection. He authored

more than 230 reports and research papers in journals and conference proceed-
ings and has edited eight volumes. He served as General Chair and Program Chair/
co-Chair for seven International Conferences, and organized over 10 International
Workshops. He has also supervised more than 120 research associates, postdoc-
toral fellows, and undergraduate and graduate students. Dr. Ghorbani is the
founding Director of Information Security Centre of Excellence at UNB. He is also
the coordinator of the Privacy, Security and Trust (PST) network at UNB. Dr.
Ghorbani is the co-Editor-In-Chief of Computational Intelligence, an international
journal, and associate editor of the International Journal of Information Technol-
ogy and Web Engineering and the ISC journal of Information Security. His book,
Intrusion detection and Prevention Systems: Concepts and Techniques, published
by Springer in October 2009.

http://kdd.ics.uci.edu

